Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L574-L588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440830

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa. The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lungs, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC (murine homolog of IL-8) secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection.NEW & NOTEWORTHY The experiments in this report identify a novel mechanism, whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet halves in OMVs secreted by P. aeruginosa, which reduced the OMV-LPS-induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/tratamento farmacológico , Animais , Tobramicina/farmacologia , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina-8/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Pneumonia/microbiologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar
2.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352468

RESUMO

Although tobramycin increases lung function in people with cystic fibrosis (pwCF), the density of Pseudomonas aeruginosa (P. aeruginosa) in the lungs is only modestly reduced by tobramycin; hence, the mechanism whereby tobramycin improves lung function is not completely understood. Here, we demonstrate that tobramycin increases 5' tRNA-fMet halves in outer membrane vesicles (OMVs) secreted by laboratory and CF clinical isolates of P. aeruginosa . The 5' tRNA-fMet halves are transferred from OMVs into primary CF human bronchial epithelial cells (CF-HBEC), decreasing OMV-induced IL-8 and IP-10 secretion. In mouse lung, increased expression of the 5' tRNA-fMet halves in OMVs attenuated KC secretion and neutrophil recruitment. Furthermore, there was less IL-8 and neutrophils in bronchoalveolar lavage fluid isolated from pwCF during the period of exposure to tobramycin versus the period off tobramycin. In conclusion, we have shown in mice and in vitro studies on CF-HBEC that tobramycin reduces inflammation by increasing 5' tRNA-fMet halves in OMVs that are delivered to CF-HBEC and reduce IL-8 and neutrophilic airway inflammation. This effect is predicted to improve lung function in pwCF receiving tobramycin for P. aeruginosa infection. New and noteworthy: The experiments in this report identify a novel mechanim whereby tobramycin reduces inflammation in two models of CF. Tobramycin increased the secretion of tRNA-fMet haves in OMVs secreted by P. aeruginiosa , which reduced the OMV-LPS induced inflammatory response in primary cultures of CF-HBEC and in mouse lung, an effect predicted to reduce lung damage in pwCF. Graphical abstract: The anti-inflammatory effect of tobramycin mediated by 5' tRNA-fMet halves secreted in P. aeruginosa OMVs. (A) P. aeruginosa colonizes the CF lungs and secrets OMVs. OMVs diffuse through the mucus layer overlying bronchial epithelial cells and induce IL-8 secretion, which recruits neutrophils that causes lung damage. ( B ) Tobramycin increases 5' tRNA-fMet halves in OMVs secreted by P. aeruginosa . 5' tRNA-fMet halves are delivered into host cells after OMVs fuse with lipid rafts in CF-HBEC and down-regulate protein expression of MAPK10, IKBKG, and EP300, which suppresses IL-8 secretion and neutrophils in the lungs. A reduction in neutrophils in CF BALF is predicted to improve lung function and decrease lung damage.

3.
bioRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37745524

RESUMO

While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.

4.
Sci Rep ; 13(1): 11995, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491532

RESUMO

Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages.


Assuntos
Fibrose Cística , Humanos , Fibrose Cística/microbiologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Mutação
5.
mBio ; 14(4): e0117123, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37432019

RESUMO

The genetic disease cystic fibrosis (CF) frequently leads to chronic lung infections by bacteria and fungi. We identified three individuals with CF with persistent lung infections dominated by Clavispora (Candida) lusitaniae. Whole-genome sequencing analysis of multiple isolates from each infection found evidence for selection for mutants in the gene MRS4 in all three distinct lung-associated populations. In each population, we found one or two unfixed, non-synonymous mutations in MRS4 relative to the reference allele found in multiple environmental and clinical isolates including the type strain. Genetic and phenotypic analyses found that all evolved alleles led to loss of function (LOF) of Mrs4, a mitochondrial iron transporter. RNA-seq analyses found that Mrs4 variants with decreased activity led to increased expression of genes involved in iron acquisition mechanisms in both low iron and replete iron conditions. Furthermore, surface iron reductase activity and intracellular iron were much higher in strains with Mrs4 LOF variants. Parallel studies found that a subpopulation of a CF-associated Exophiala dermatitidis infection also had a non-synonymous LOF mutation in MRS4. Together, these data suggest that MRS4 mutations may be beneficial during chronic CF lung infections in diverse fungi, perhaps, for the purposes of adaptation to an iron-restricted environment with chronic infections. IMPORTANCE The identification of MRS4 mutations in Clavispora (Candida) lusitaniae and Exophiala dermatitidis in individuals with cystic fibrosis (CF) highlights a possible adaptive mechanism for fungi during chronic CF lung infections. The findings of this study suggest that loss of function of the mitochondrial iron transporter Mrs4 can lead to increased activity of iron acquisition mechanisms, which may be advantageous for fungi in iron-restricted environments during chronic infections. This study provides valuable information for researchers working toward a better understanding of the pathogenesis of chronic lung infections and more effective therapies to treat them.


Assuntos
Fibrose Cística , Exophiala , Humanos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Infecção Persistente , Fungos/genética , Fungos/metabolismo , Pulmão/metabolismo , Ferro/metabolismo
6.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066389

RESUMO

The genetic disease cystic fibrosis (CF) frequently leads to chronic lung infections by bacteria and fungi. We identified three individuals with CF with persistent lung infections dominated by Clavispora ( Candida ) lusitaniae . Whole genome sequencing analysis of multiple isolates from each infection found evidence for selection for mutants in the gene MRS4 in all three distinct lung-associated populations. In each population, we found one or two unfixed, non-synonymous mutations in MRS4 relative to the reference allele found in multiple environmental and clinical isolates including the type strain. Genetic and phenotypic analyses found that all evolved alleles led to loss of function of Mrs4, a mitochondrial iron transporter. RNA Seq analyses found that Mrs4 variants with decreased activity led to increased expression of genes involved in iron acquisition mechanisms in both low iron and replete iron conditions. Furthermore, surface iron reductase activity and intracellular iron was much higher in strains with Mrs4 loss of function variants. Parallel studies found that a subpopulation of a CF-associated Exophiala dermatiditis infection also had a non-synonymous loss of function mutation in MRS4. Together, these data suggest that MRS4 mutations may be beneficial during chronic CF lung infections in diverse fungi perhaps for the purposes of adaptation to an iron restricted environment with chronic infections.

7.
Arch Clin Med Case Rep ; 6(5): 689-692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465982

RESUMO

Background: While acute respiratory distress following electronic cigarette (e-cig) use has been described, the effects of chronic e-cig use on lung health are currently unknown. Acute e-cigarette/vaping product use-associated lung injury (EVALI) has been highlighted recently in numerous cases across the United States. Numerous EVALI case reports highlight alterations in alveolar macrophages, justifying investigation of this key immune sentinel of the lung in habitual e-cig users. Case Presentation: After informed consent, we performed a bronchoscopy on a 25 year asymptomatic woman who reported daily e-cig use. To evaluate for evidence of abnormal lipid homeostasis, we performed histologic and Oil Red O stain evaluation of alveolar macrophages obtained from bronchoalveolar lavage fluid. Our analyses demonstrate a prevalence of cells with high lipid accumulation in multiple, discrete cytoplasmic foci. We found a high lipid laden macrophage index within alveolar macrophages isolated from a chronic e-cig user. At the ultrastructural level, we found membrane-bound compartments filled with material of various densities segregated along curved phase separation lines reminiscent of suspensions of immiscible fluids. Conclusions: We found a unique ultrastructural pattern in alveolar macrophages isolated from a chronic e-cig user that is unlike any other previously reported in aspiration syndromes and may represent a defining diagnostic feature of chronic e-cig use.

8.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820705

RESUMO

Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, ensuring proper gas exchange by ingesting cellular debris and pathogens, and regulating inflammatory responses. Therefore, understanding the heterogeneity and diverse roles played by AMs, interstitial macrophages, and recruited monocytes is critical for treating airway diseases. We performed single-cell RNA sequencing on 113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic fibrosis subjects and identified two MARCKS+LGMN+IMs, FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte subtypes, DC1, DC2, migDCs, plasmacytoid DCs, lymphocytes, epithelial cells, and four AM superclusters (families) based on the gene expression of IFI27 and APOC2 These four AM families have at least eight distinct functional members (subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, cholesterol, chemokine, metallothionein, interferon, and small-cluster AMs. Interestingly, the chemokine cluster further divides with each subcluster selectively expressing a unique combination of chemokines. One of the most striking observations, besides the heterogeneity, is the conservation of AM family members in relatively equal ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq technology were used to investigate cell surface markers that distinguish resident AMs from recruited monocytes. Last, other AM datasets were projected onto our dataset. Similar AM superclusters and functional subclusters were observed, along with a significant increase in chemokine and IFN AM subclusters in individuals infected with COVID-19. Overall, functional specializations of the AM subclusters suggest that there are highly regulated AM niches with defined programming states, highlighting a clear division of labor.


Assuntos
Apolipoproteína C-II , Macrófagos Alveolares , Proteínas de Membrana , Apolipoproteína C-II/metabolismo , Líquido da Lavagem Broncoalveolar , Quimiocinas , Humanos , Macrófagos Alveolares/metabolismo , Proteínas de Membrana/metabolismo , Análise de Célula Única
9.
Elife ; 112022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35502894

RESUMO

Microbes frequently evolve in reproducible ways. Here, we show that differences in specific metabolic regulation rather than inter-strain interactions explain the frequent presence of lasR loss-of-function (LOF) mutations in the bacterial pathogen Pseudomonas aeruginosa. While LasR contributes to virulence through its role in quorum sensing, lasR mutants have been associated with more severe disease. A model based on the intrinsic growth kinetics for a wild type strain and its LasR- derivative, in combination with an experimental evolution based genetic screen and further genetics analyses, indicated that differences in metabolism were sufficient to explain the rise of these common mutant types. The evolution of LasR- lineages in laboratory and clinical isolates depended on activity of the two-component system CbrAB, which modulates substrate prioritization through the catabolite repression control pathway. LasR- lineages frequently arise in cystic fibrosis lung infections and their detection correlates with disease severity. Our analysis of bronchoalveolar lavage fluid metabolomes identified compounds that negatively correlate with lung function, and we show that these compounds support enhanced growth of LasR- cells in a CbrB-controlled manner. We propose that in vivo metabolomes contribute to pathogen evolution, which may influence the progression of disease and its treatment.


Bacteria can evolve quickly, a skill that proves useful in ever-changing environments. For example, individuals in many bacterial species can start to work together under certain circumstances; this ability is underpinned by a system called quorum sensing, which allows cells to detect nearby conspecifics. However, species of harmful bacteria often lose their quorum sensing abilities when they infect humans. This is the case for Pseudomonas aeruginosa, which normally lives in the soil but can also cause deadly conditions, especially in hospital settings. Patients often carry P. aeruginosa with mutations that disable the quorum-sensing signal receptor LasR, a molecular actor that can switch on many other genes in a cell. People who are infected with P. aeruginosa strains carrying a damaged version of the lasR gene are typically more ill and less likely to recover. Why this is the case ­ and in fact, why genes associated with quorum sensing often lose function during infection ­ is still unclear. To investigate this question, Mould et al. used laboratory evolution experiments and computer models of P. aeruginosa growth to understand how lasR mutant cells evolve. Differences in growth rates and ways to use resources (rather than changes in cell-to-cell interactions) best explained why lasR mutants become more successful. Further experiments narrowed down the molecular cascade required for the rise of lasR mutants, identifying a pathway that regulates how P. aeruginosa switches between different nutrient sources. This work reveals a new connection between quorum sensing genes and nutrient regulation in bacterial cells. Loss of functional LasR changes the way that cells use nutrients, and thus will reshape how they interact with host cells and other bacteria. This insight could lead to better ways to predict the outcomes of bacterial infections and how to best treat them.


Assuntos
Fibrose Cística , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrose Cística/complicações , Regulação Bacteriana da Expressão Gênica , Humanos , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/genética , Transativadores/genética , Transativadores/metabolismo
10.
mBio ; 12(5): e0176321, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544277

RESUMO

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.


Assuntos
Coinfecção/complicações , Fibrose Cística/complicações , Modelos Biológicos , Infecção Persistente/complicações , Animais , Biofilmes , Humanos , Interações Microbianas , Sistema Respiratório/microbiologia
11.
mBio ; 12(4): e0215321, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465017

RESUMO

The prevalence of Aspergillus fumigatus colonization in individuals with cystic fibrosis (CF) and subsequent fungal persistence in the lung is increasingly recognized. However, there is no consensus for clinical management of A. fumigatus in CF individuals, due largely to uncertainty surrounding A. fumigatus CF pathogenesis and virulence mechanisms. To address this gap in knowledge, a longitudinal series of A. fumigatus isolates from an individual with CF were collected over 4.5 years. Isolate genotypes were defined with whole-genome sequencing that revealed both transitory and persistent A. fumigatus in the lung. Persistent lineage isolates grew most readily in a low-oxygen culture environment, and conidia were more sensitive to oxidative stress-inducing conditions than those from nonpersistent isolates. Closely related persistent isolates harbored a unique allele of the high-osmolarity glycerol (HOG) pathway mitogen-activated protein kinase kinase, Pbs2 (pbs2C2). Data suggest this novel pbs2C2 allele arose in vivo and is necessary for the fungal response to osmotic stress in a low-oxygen environment through hyperactivation of the HOG (SakA) signaling pathway. Hyperactivation of the HOG pathway through pbs2C2 comes at the cost of decreased conidial stress resistance in the presence of atmospheric oxygen levels. These novel findings shed light on pathoadaptive mechanisms of A. fumigatus in CF, lay the foundation for identifying persistent A. fumigatus isolates that may require antifungal therapy, and highlight considerations for successful culture of persistent Aspergillus CF isolates. IMPORTANCE Aspergillus fumigatus infection causes a spectrum of clinical manifestations. For individuals with cystic fibrosis (CF), allergic bronchopulmonary aspergillosis (ABPA) is an established complication, but there is a growing appreciation for A. fumigatus airway persistence in CF disease progression. There currently is little consensus for clinical management of A. fumigatus long-term culture positivity in CF. A better understanding of A. fumigatus pathogenesis mechanisms in CF is expected to yield insights into when antifungal therapies are warranted. Here, a 4.5-year longitudinal collection of A. fumigatus isolates from a patient with CF identified a persistent lineage that harbors a unique allele of the Pbs2 mitogen-activated protein kinase kinase (MAPKK) necessary for unique CF-relevant stress phenotypes. Importantly for A. fumigatus CF patient diagnostics, this allele provides increased fitness under CF lung-like conditions at a cost of reduced in vitro growth under standard laboratory conditions. These data illustrate a molecular mechanism for A. fumigatus CF lung persistence with implications for diagnostics and antifungal therapy.


Assuntos
Aspergillus fumigatus/genética , Fibrose Cística/microbiologia , Glicerol/metabolismo , Interações Hospedeiro-Patógeno/genética , Pulmão/microbiologia , Redes e Vias Metabólicas/genética , Mutação , Aspergilose Broncopulmonar Alérgica/microbiologia , Aspergillus fumigatus/patogenicidade , Genômica , Genótipo , Humanos , Estudos Longitudinais , Pulmão/patologia , Concentração Osmolar , Transdução de Sinais
12.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33795318

RESUMO

BACKGROUND: Despite increased interest in mesenchymal stromal cell (MSC)-based cell therapies for acute respiratory distress syndrome (ARDS), clinical investigations have not yet been successful and our understanding of the potential in vivo mechanisms of MSC actions in ARDS remains limited. ARDS is driven by an acute severe innate immune dysregulation, often characterised by inflammation, coagulation and cell injury. How this inflammatory microenvironment influences MSC functions remains to be determined. AIM: The aim of this study was to comparatively assess how the inflammatory environment present in ARDS lungs versus the lung environment present in healthy volunteers alters MSC behaviour. METHODS: Clinical-grade human bone marrow-derived MSCs (hMSCs) were exposed to bronchoalveolar lavage fluid (BALF) samples obtained from ARDS patients or from healthy volunteers. Following exposure, hMSCs and their conditioned media were evaluated for a broad panel of relevant properties, including viability, levels of expression of inflammatory cytokines, gene expression, cell surface human leukocyte antigen expression, and activation of coagulation and complement pathways. RESULTS: Pro-inflammatory, pro-coagulant and major histocompatibility complex (self-recognition) related gene expression was markedly upregulated in hMSCs exposed ex vivo to BALF obtained from healthy volunteers. These changes were less apparent and often opposite in hMSCs exposed to ARDS BALF samples. CONCLUSION: These data provide new insights into how hMSCs behave in healthy versus inflamed lung environments, and strongly suggest that the inflamed environment in ARDS induces hMSC responses that are potentially beneficial for cell survival and actions. This further highlights the need to understand how different disease environments affect hMSC functions.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Líquido da Lavagem Broncoalveolar , Humanos , Pulmão
13.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785623

RESUMO

The evolution of pathogens in response to selective pressures present during chronic infections can influence their persistence and virulence and the outcomes of antimicrobial therapy. Because subpopulations within an infection can be spatially separated and the host environment can fluctuate, an appreciation of the pathways under selection may be most easily revealed through the analysis of numerous isolates from single infections. Here, we continued our analysis of a set of clonally derived Clavispora (Candida) lusitaniae isolates from a single chronic lung infection with a striking enrichment in the number of alleles of MRR1 Genetic and genomic analyses found evidence for repeated acquisition of gain-of-function mutations that conferred constitutive Mrr1 activity. In the same population, there were multiple alleles with both gain-of-function mutations and secondary suppressor mutations that either attenuated or abolished the constitutive activity, suggesting the presence of counteracting selective pressures. Our studies demonstrated trade-offs between high Mrr1 activity, which confers resistance to the antifungal fluconazole, host factors, and bacterial products through its regulation of MDR1, and resistance to hydrogen peroxide, a reactive oxygen species produced in the neutrophilic environment associated with this infection. This inverse correlation between high Mrr1 activity and hydrogen peroxide resistance was observed in multiple Candida species and in serially collected populations from this individual over 3 years. These data lead us to propose that dynamic or variable selective pressures can be reflected in population genomics and that these dynamics can complicate the drug resistance profile of the population.IMPORTANCE Understanding microbial evolution within patients is critical for managing chronic infections and understanding host-pathogen interactions. Here, our analysis of multiple MRR1 alleles in isolates from a single Clavispora (Candida) lusitaniae infection revealed the selection for both high and low Mrr1 activity. Our studies reveal trade-offs between high Mrr1 activity, which confers resistance to the commonly used antifungal fluconazole, host antimicrobial peptides, and bacterial products, and resistance to hydrogen peroxide. This work suggests that spatial or temporal differences within chronic infections can support a large amount of dynamic and parallel evolution and that Mrr1 activity is under both positive and negative selective pressure to balance different traits that are important for microbial survival.


Assuntos
Evolução Biológica , Proteínas Fúngicas/genética , Micoses/microbiologia , Saccharomycetales/efeitos dos fármacos , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Fluconazol/farmacologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Testes de Sensibilidade Microbiana , Mutação , Saccharomycetales/genética , Saccharomycetales/isolamento & purificação , Saccharomycetales/metabolismo
14.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L530-L544, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471607

RESUMO

Mutations in CFTR alter macrophage responses, for example, by reducing their ability to phagocytose and kill bacteria. Altered macrophage responses may facilitate bacterial infection and inflammation in the lungs, contributing to morbidity and mortality in cystic fibrosis (CF). Extracellular vesicles (EVs) are secreted by multiple cell types in the lungs and participate in the host immune response to bacterial infection, but the effect of EVs secreted by CF airway epithelial cells (AEC) on CF macrophages is unknown. This report examines the effect of EVs secreted by primary AEC on monocyte-derived macrophages (MDM) and contrasts responses of CF and wild type (WT) MDM. We found that EVs generally increase pro-inflammatory cytokine secretion and expression of innate immune genes in MDM, especially when EVs are derived from AEC exposed to Pseudomonas aeruginosa and that this effect is attenuated in CF MDM. Specifically, EVs secreted by P. aeruginosa exposed AEC (EV-PA) induced immune response genes and increased secretion of proinflammatory cytokines, chemoattractants, and chemokines involved in tissue repair by WT MDM, but these effects were less robust in CF MDM. We attribute attenuated responses by CF MDM to differences between CF and WT macrophages because EVs secreted by CF AEC or WT AEC elicited similar responses in CF MDM. Our findings demonstrate the importance of AEC EVs in macrophage responses and show that the Phe508del mutation in CFTR attenuates the innate immune response of MDM to EVs.


Assuntos
Fibrose Cística/imunologia , Vesículas Extracelulares/microbiologia , Imunidade Inata/imunologia , Inflamação/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Infecções por Pseudomonas/imunologia , Células Cultivadas , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Citocinas , Células Epiteliais/microbiologia , Humanos , Inflamação/microbiologia , Inflamação/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Fagocitose , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação
15.
PLoS One ; 16(1): e0245696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481845

RESUMO

Data on adverse events from research bronchoscopy with bronchoalveolar lavage (BAL) in patients with cystic fibrosis (CF) is lacking. As research bronchoscopy with BAL is useful for isolation of immune cells and investigation of CF lung microbiome, we sought to investigate the safety of bronchoscopy in adult patients with CF. Between November 2016 and September 2019, we performed research bronchoscopies on CF subjects (32) and control subjects (82). Control subjects were nonsmokers without respiratory disease. CF subjects had mild or moderate obstructive lung disease (FEV1 > 50% predicted) and no evidence of recent CF pulmonary exacerbation. There was no significant difference in the age or sex of each cohort. Neither group experienced life threatening adverse events. The number of adverse events was similar between CF and control subjects. The most common adverse events were sore throat and cough, which occurred at similar frequencies in control and CF subjects. Fever and headache occurred more frequently in CF subjects. However, the majority of fevers were seen in CF subjects with FEV1 values below 65% predicted. We found that CF subjects had similar adverse event profiles following research bronchoscopy compared to healthy subjects. While CF subjects had a higher rate of fevers, this adverse event occurred with greater frequency in CF subjects with lower FEV1. Our data demonstrate that research bronchoscopy with BAL is safe in CF subjects and that safety profile is improved if bronchoscopies are limited to subjects with an FEV1 > 65% predicted.


Assuntos
Lavagem Broncoalveolar , Broncoscopia , Fibrose Cística/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Segurança , Adolescente , Adulto , Lavagem Broncoalveolar/efeitos adversos , Lavagem Broncoalveolar/métodos , Broncoscopia/efeitos adversos , Broncoscopia/métodos , Fibrose Cística/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Epigenetics ; 16(11): 1187-1200, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33380271

RESUMO

Various pathogens use differing strategies to evade host immune response including modulating the host's epigenome. Here, we investigate if EVs secreted from P. aeruginosa alter DNA methylation in human lung macrophages, thereby potentially contributing to a dysfunctional innate immune response. Using a genome-wide DNA methylation approach, we demonstrate that P. aeruginosa EVs alter certain host cell DNA methylation patterns. We identified 1,185 differentially methylated CpGs (FDR < 0.05), which were significantly enriched for distal DNA regulatory elements including enhancer regions and DNase hypersensitive sites. Notably, all but one of the 1,185 differentially methylated CpGs were hypomethylated in association with EV exposure. Significantly hypomethylated CpGs tracked to genes including AXL, CFB and CCL23. Gene expression analysis identified 310 genes exhibiting significantly altered expression 48 hours post P. aeruginosa EV treatment, with 75 different genes upregulated and 235 genes downregulated. Some CpGs associated with cytokines such as CSF3 displayed strong negative correlations between DNA methylation and gene expression. Our infection model illustrates how secreted products (EVs) from bacteria can alter DNA methylation of the host epigenome. Changes in DNA methylation in distal DNA regulatory regions in turn can modulate cellular gene expression and potential downstream cellular processes.


Assuntos
Metilação de DNA , Vesículas Extracelulares , Ilhas de CpG , Desoxirribonucleases , Humanos , Pulmão , Macrófagos , Pseudomonas aeruginosa , Sequências Reguladoras de Ácido Nucleico
17.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L908-L925, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901521

RESUMO

Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos
18.
Immunohorizons ; 4(8): 508-519, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819967

RESUMO

Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the most common pathogens colonizing the lungs of cystic fibrosis patients. P. aeruginosa secrete extracellular vesicles (EVs) that contain LPS and other virulence factors that modulate the host's innate immune response, leading to an increased local proinflammatory response and reduced pathogen clearance, resulting in chronic infection and ultimately poor patient outcomes. Lung macrophages are the first line of defense in the airway innate immune response to pathogens. Proper host response to bacterial infection requires communication between APC and T cells, ultimately leading to pathogen clearance. In this study, we investigate whether EVs secreted from P. aeruginosa alter MHC Ag expression in lung macrophages, thereby potentially contributing to decreased pathogen clearance. Primary lung macrophages from human subjects were collected via bronchoalveolar lavage and exposed to EVs isolated from P. aeruginosa in vitro. Gene expression was measured with the NanoString nCounter gene expression assay. DNA methylation was measured with the EPIC array platform to assess changes in methylation. P. aeruginosa EVs suppress the expression of 11 different MHC-associated molecules in lung macrophages. Additionally, we show reduced DNA methylation in a regulatory region of gene complement factor B (CFB) as the possible driving mechanism of widespread MHC gene suppression. Our results demonstrate MHC molecule downregulation by P. aeruginosa-derived EVs in lung macrophages, which is consistent with an immune evasion strategy employed by a prokaryote in a host-pathogen interaction, potentially leading to decreased pulmonary bacterial clearance.


Assuntos
Fibrose Cística/imunologia , Vesículas Extracelulares/imunologia , Interações Hospedeiro-Patógeno/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Adulto , Fibrose Cística/microbiologia , Metilação de DNA , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Evasão da Resposta Imune , Imunidade Inata , Masculino , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Adulto Jovem
19.
Am J Physiol Lung Cell Mol Physiol ; 319(3): L408-L415, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668165

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CFTR gene. Although viral respiratory tract infections are, in general, more severe in patients with CF compared with the general population, a small number of studies indicate that SARS-CoV-2 does not cause a worse infection in CF. This is surprising since comorbidities including preexisting lung disease have been reported to be associated with worse outcomes in SARS-CoV-2 infections. Several recent studies provide insight into why SARS-CoV-2 may not produce more severe outcomes in CF. First, ACE and ACE2, genes that play key roles in SARS-CoV-2 infection, have some variants that are predicted to reduce the severity of SARS-CoV-2 infection. Second, mRNA for ACE2 is elevated and mRNA for TMPRSS2, a serine protease, is decreased in CF airway epithelial cells. Increased ACE2 is predicted to enhance SARS-CoV-2 binding to cells but would increase conversion of angiotensin II, which is proinflammatory, to angiotensin-1-7, which is anti-inflammatory. Thus, increased ACE2 would reduce inflammation and lung damage due to SARS-CoV-2. Moreover, decreased TMPRSS2 would reduce SARS-CoV-2 entry into airway epithelial cells. Second, many CF patients are treated with azithromycin, which suppresses viral infection and lung inflammation and inhibits the activity of furin, a serine protease. Finally, the CF lung contains high levels of serine protease inhibitors including ecotin and SERPINB1, which are predicted to reduce the ability of TMPRSS2 to facilitate SARS-CoV-2 entry into airway epithelial cells. Thus, a variety of factors may mitigate the severity of SARS-CoV-2 in CF.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/etiologia , Fibrose Cística/virologia , Inflamação/virologia , Pneumonia Viral/etiologia , COVID-19 , Fibrose Cística/metabolismo , Células Epiteliais/virologia , Humanos , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2
20.
Microbiome ; 8(1): 45, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32238195

RESUMO

BACKGROUND: Chronic infection and concomitant airway inflammation is the leading cause of morbidity and mortality for people living with cystic fibrosis (CF). Although chronic infection in CF is undeniably polymicrobial, involving a lung microbiota, infection surveillance and control approaches remain underpinned by classical aerobic culture-based microbiology. How to use microbiomics to direct clinical management of CF airway infections remains a crucial challenge. A pivotal step towards leveraging microbiome approaches in CF clinical care is to understand the ecology of the CF lung microbiome and identify ecological patterns of CF microbiota across a wide spectrum of lung disease. Assessing sputum samples from 299 patients attending 13 CF centres in Europe and the USA, we determined whether the emerging relationship of decreasing microbiota diversity with worsening lung function could be considered a generalised pattern of CF lung microbiota and explored its potential as an informative indicator of lung disease state in CF. RESULTS: We tested and found decreasing microbiota diversity with a reduction in lung function to be a significant ecological pattern. Moreover, the loss of diversity was accompanied by an increase in microbiota dominance. Subsequently, we stratified patients into lung disease categories of increasing disease severity to further investigate relationships between microbiota characteristics and lung function, and the factors contributing to microbiota variance. Core taxa group composition became highly conserved within the severe disease category, while the rarer satellite taxa underpinned the high variability observed in the microbiota diversity. Further, the lung microbiota of individual patient were increasingly dominated by recognised CF pathogens as lung function decreased. Conversely, other bacteria, especially obligate anaerobes, increasingly dominated in those with better lung function. Ordination analyses revealed lung function and antibiotics to be main explanators of compositional variance in the microbiota and the core and satellite taxa. Biogeography was found to influence acquisition of the rarer satellite taxa. CONCLUSIONS: Our findings demonstrate that microbiota diversity and dominance, as well as the identity of the dominant bacterial species, in combination with measures of lung function, can be used as informative indicators of disease state in CF. Video Abstract.


Assuntos
Bactérias/classificação , Fibrose Cística/microbiologia , Pulmão/microbiologia , Pulmão/fisiopatologia , Microbiota , Adulto , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Progressão da Doença , Europa (Continente) , Feminino , Humanos , Inflamação , Pulmão/efeitos dos fármacos , Masculino , Testes de Função Respiratória , Análise de Sequência de DNA , Escarro/microbiologia , Estados Unidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA